Ứng dụng của trí tuệ nhân tạo AI trong chẩn đoán ung thư thực quản (Phần 1)

Yêu cầu về các phương pháp phát hiện các đặc điểm ung thư thực quản sớm hiệu quả hơn đã dẫn đến các nghiên cứu chuyên sâu trong lĩnh vực trí tuệ nhân tạo (AI). Kỹ thuật học và ghi nhớ - Deep learning (DL) đã mang lại những đột phá trong việc xử lý hình ảnh, video và các khía cạnh khác, trong khi hệ thống mạng nơ-ron phức tạp (CNN) đã mở đường cho việc phát hiện hình ảnh và video nội soi có độ phân giải cao.

1. Trí tuệ nhân tạo là gì?

Định nghĩa trí tuệ nhân tạo: (AI: Artificial Intelligence) có thể được định nghĩa như một ngành của khoa học máy tính liên quan đến việc tự động hóa các hành vi thông minh. AI là một bộ phận của khoa học máy tính và do đó nó phải được đặt trên những nguyên lý lý thuyết vững chắc, có khả năng ứng dụng được của lĩnh vực này.

2. Sự khác biệt giữa trí tuệ nhân tạo AI, Machine Learning và Deep Learning là gì?

  • Trí tuệ nhân tạo: Là nghiên cứu về cách chế tạo những cỗ máy có khả năng thực hiện các nhiệm vụ thường đòi hỏi trí thông minh của con người. AI (Artificial Intelligence) bao gồm nhiều lĩnh vực nghiên cứu, từ thuật toán di truyền đến các hệ thống chuyên gia và cung cấp phạm vi cho các lập luận về những gì cấu thành AI. .
  • Machine Learning: Là quá trình dạy máy tính thực hiện một nhiệm vụ, thay vì lập trình nó làm thế nào để thực hiện nhiệm vụ đó từng bước một.
  • Deep Learning: Là một tập hợp con của Machine Learning, có khả năng khác biệt ở một số khía cạnh quan trọng so với Machine Learning nông truyền thống, cho phép máy tính giải quyết một loạt các vấn đề phức tạp không thể giải quyết được.

3. Tổng quan về ứng dụng của trí tuệ nhân tạo với nội soi tiêu hoá

Do diễn tiến nhanh và tiên lượng xấu của ung thư thực quản (EC) nên việc phát hiện và chẩn đoán sớm ung thư thực quản có giá trị rất lớn trong việc cải thiện tiên lượng cho bệnh nhân. Tuy nhiên, nội soi phát hiện sớm ung thư thực quản, đặc biệt là loạn sản Barrett hoặc loạn sản biểu mô vảy thực quản rất khó. Do đó, yêu cầu về các phương pháp phát hiện các đặc điểm ung thư thực quản sớm hiệu quả hơn đã dẫn đến các nghiên cứu chuyên sâu trong lĩnh vực trí tuệ nhân tạo (AI). Kỹ thuật học và ghi nhớ - Deep learning (DL) đã mang lại những đột phá trong việc xử lý hình ảnh, video và các khía cạnh khác, trong khi hệ thống mạng nơ-ron phức tạp (CNN) đã mở đường cho việc phát hiện hình ảnh và video nội soi có độ phân giải cao.

3.1 Giới thiệu về ung thư thực quản

Ung thư thực quản (EC) là bệnh ung thư phổ biến thứ 8 và là nguyên nhân gây tử vong do ung thư đứng hàng thứ 6 trên toàn thế giới. Ung thư thực quản chủ yếu bao gồm ung thư biểu mô tuyến thực quản (EAC) và ung thư biểu mô tế bào vảy thực quản (ESCC). Ung thư biểu mô tuyến thực quản là loại bệnh lý phổ biến nhất ở các nước phương Tây, hơn 40% bệnh nhân mắc ung thư biểu mô tuyến thực quản được chẩn đoán sau khi bệnh đã di căn, và tỷ lệ sống 5 năm dưới 20%.


Ung thư thực quản (EC) là bệnh ung thư phổ biến thứ 8 và là nguyên nhân gây tử vong do ung thư đứng hàng thứ 6 trên toàn thế giới
Ung thư thực quản (EC) là bệnh ung thư phổ biến thứ 8 và là nguyên nhân gây tử vong do ung thư đứng hàng thứ 6 trên toàn thế giới

3.2 Barrett thực quản (BE)

Barrett thực quản (BE) là một tình trạng tiền ác tính được đặc trưng bởi sự thay thế biểu mô thực quản vảy bình thường bằng biểu mô ruột chuyển sản có chứa các tế bào hình cốc. Đây là kết quả của tình trạng viêm mãn tính thực quản, làm tăng nguy cơ mắc bệnh ung thư biểu mô tuyến thực quản. Theo dõi nội soi đối với bệnh nhân Barrett thực quản để phát hiện sớm loạn sản hoặc ung thư biểu mô đã được khuyến nghị bởi các hiệp hội tiêu hóa của các nước phương Tây. Theo dõi nội soi ở bệnh nhân Barrett thực quản được yêu cầu với các mẫu sinh thiết ngẫu nhiên 4 góc phần tư thu được cứ sau 1 đến 2cm để phát hiện chứng loạn sản. Phương pháp này xâm lấn, tốn thời gian và khó tuân thủ.

3.3 Vai trò của nội soi thực quản dạ dày trong chẩn đoán ung thư thực quản giai đoạn sớm

Nội soi dạ dày vẫn là cách chính để phát hiện ESCC sớm. Tuy nhiên, các đặc điểm nội soi của những tổn thương ban đầu này rất tinh vi và dễ bị bỏ sót so với nội soi ánh sáng trắng thông thường (WLE). Các vòng mao mạch nội tâm mạc (IPCLs) là các vi mạch, được coi là dấu hiệu của ung thư biểu mô tế bào vảy thực quản ESCC, bởi vì những thay đổi về hình thái của chúng tương quan với độ sâu xâm lấn của ung thư biểu mô tế bào vảy thực quản. Các phương thức hình ảnh nội soi tiên tiến, chẳng hạn như hình ảnh dải hẹp trên nội soi (NBI), kết hợp với nội soi phóng đại, giúp cải thiện hình ảnh của các mô hình vi mạch tế bào trong niêm mạc thực quản của bệnh nhân ung thư biểu mô tế bào vảy thực quản. Mặc dù NBI đã cho thấy độ nhạy cao trong việc phát hiện ung thư biểu mô tế bào vảy thực quản, nhưng hiệu quả của nó trong việc xác định các tổn thương này vẫn còn hạn chế.


Nội soi dạ dày vẫn là cách chính để phát hiện ESCC sớm
Nội soi dạ dày vẫn là cách chính để phát hiện ESCC sớm

3.4 Ứng dụng của thuật toán Machine learning và Deep learning trong ung thư thực quản

Yêu cầu về các phương pháp phát hiện và xác định đặc điểm ung thư thực quản sớm hiệu quả hơn đã dẫn đến các nghiên cứu chuyên sâu trong lĩnh vực trí tuệ nhân tạo (AI), có thể được xác định bằng trí thông minh do máy móc thiết lập trái ngược với trí thông minh tự nhiên được hiển thị bởi con người và động vật khác. Học máy (ML) và học sâu (DL) là những phần quan trọng của AI. Học máy có thể được chia thành các phương pháp có giám sát và không được giám sát. Học không giám sát là xác định các nhóm trong dữ liệu theo những điểm chung, thiếu kiến ​​thức về số lượng các nhóm hoặc ý nghĩa của chúng. Khi gói đào tạo chứa các cặp đầu vào-đầu ra, cần có một mô hình học có giám sát để ánh xạ đầu vào mới đến đầu ra.

Các kỹ thuật ML thông thường bị hạn chế về khả năng xử lý dữ liệu tự nhiên ở dạng thô. Trong giai đoạn đầu của nghiên cứu và phát triển, việc đào tạo mô hình chủ yếu là với ML, qua đó các nhà nghiên cứu phải trích xuất thủ công các đặc điểm bệnh có thể xảy ra dựa trên kiến ​​thức lâm sàng. Sức mạnh của hệ thống chẩn đoán có sự hỗ trợ của máy tính (CAD) này yếu và không đủ để áp dụng trong chẩn đoán thời gian thực lâm sàng.

3.5 Vai trò của Mạng nơ-ron chuyển đổi (CNN)

Mạng nơ-ron chuyển đổi (CNN) là mô hình học máy được giám sát lấy cảm hứng từ vỏ não thị giác của não người xử lý và nhận dạng hình ảnh. Mỗi nơron nhân tạo là một đơn vị tính toán và tất cả chúng được kết nối với nhau, tạo thành một mạng lưới. Bằng nhiều lớp mạng, CNN có thể trích xuất các tính năng chính từ một hình ảnh với quá trình xử lý trước tối thiểu và sau đó cung cấp phân loại cuối cùng thông qua các lớp được kết nối đầy đủ dưới dạng đầu ra. Sự cạnh tranh về hiệu suất ngày càng tăng đã dẫn đến sự phức tạp ngày càng tăng của các lớp gộp dẫn đến khái niệm học sâu. Khía cạnh quan trọng của học sâu là các lớp tính năng này không được thiết kế bởi các kỹ sư con người. Chúng được học từ dữ liệu bằng quy trình học tập có mục đích chung. Học sâu đã mang lại những đột phá trong việc xử lý hình ảnh, video và các khía cạnh khác, trong khi các CNN lặp lại đã chiếu sáng cho việc phát hiện các hình ảnh và video nội soi.

Hiện nay, khám sàng lọc ung thư đường tiêu hoá là biện pháp khoa học và hiệu quả để phát hiện sớm ung thư đường tiêu hóa (ung thư thực quản, ung thư dạ dày, ung thư đại tràng) và đưa ra phác đồ điều trị tốt. Hiện tại, Bệnh viện Đa khoa Quốc tế Vinmec có Gói tầm soát và phát hiện sớm ung thư đường tiêu hóa (thực quản - dạ dày - đại tràng) kết hợp khám lâm sàng và cận lâm sàng để đem lại kết quả chính xác nhất có thể.


Hiện nay, khám sàng lọc ung thư đường tiêu hoá là biện pháp khoa học và hiệu quả để phát hiện sớm ung thư đường tiêu hóa
Hiện nay, khám sàng lọc ung thư đường tiêu hoá là biện pháp khoa học và hiệu quả để phát hiện sớm ung thư đường tiêu hóa

Khi sàng lọc ung thư đường tiêu hóa tại Vinmec, Quý khách sẽ được:

  • Khám Chuyên khoa Nội tiêu hóa với bác sĩ chuyên khoa ung bướu (có hẹn).
  • Nội soi dạ dày và nội soi đại tràng với máy nội soi NBI có gây mê.
  • Xét nghiệm tổng phân tích tế bào máu ngoại vi (bằng máy đếm laser).
  • Xét nghiệm thời gian prothrombin bằng máy tự động.
  • Xét nghiệm thời gian thrombin bằng máy tự động.
  • Xét nghiệm thời gian thromboplastin một phần hoạt hoá (APTT: Activated Partial Thromboplastin Time) bằng máy tự động.
  • Siêu âm ổ bụng tổng quát

Để đặt lịch khám tại viện, Quý khách vui lòng bấm số HOTLINE hoặc đặt lịch trực tiếp TẠI ĐÂY. Tải và đặt lịch khám tự động trên ứng dụng MyVinmec để quản lý, theo dõi lịch và đặt hẹn mọi lúc mọi nơi ngay trên ứng dụng.

Nguồn tham khảo:

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394-424. [PubMed] [DOI]
  2. Hur C, Miller M, Kong CY, Dowling EC, Nattinger KJ, Dunn M, Feuer EJ. Trends in esophageal adenocarcinoma incidence and mortality. Cancer. 2013;119:1149-1158. [PubMed] [DOI]
  3. Thrift AP. The epidemic of oesophageal carcinoma: Where are we now? Cancer Epidemiol. 2016;41:88-95. [PubMed] [DOI]
  4. Lu-Ming Huang, Wen-Juan Yang, Zhi-Yin Huang, Cheng-Wei Tang, Jing Li, Artificial intelligence technique in detection of early esophageal cancer, World J Gastroenterol. Oct 21, 2020; 26(39): 5959-5969
Chia sẻ
Câu chuyện khách hàng Thông tin sức khỏe Sống khỏe